
Efficient Object Manipulation Planning with Monte
Carlo Tree Search

Huaijiang Zhu∗, Ludovic Righetti∗†
∗New York University, New York, USA

†Max-Planck Institute for Intelligent Systems, Tübingen, Germany

Abstract—This work presents an efficient approach to object
manipulation planning using Monte Carlo Tree Search (MCTS)
to find contact sequences and an efficient ADMM-based trajec-
tory optimization algorithm to evaluate the dynamic feasibility
of candidate contact sequences. To accelerate MCTS, we learn a
goal-conditioned policy-value network used to direct the search
towards promising nodes. Further, manipulation-specific heuris-
tics enable to drastically reduce the search space. Systematic
object manipulation experiments in a physics simulator demon-
strate the efficiency of our approach. In particular, our approach
scales favorably for long manipulation sequences thanks to the
learned policy-value network, significantly improving planning
success rate.

I. INTRODUCTION

The ability to plan sequences of contacts and movements to
manipulate objects is central to endow robots with sufficient
autonomy to perform complex tasks. This remains, however,
particularly challenging as it typically leads to intractable com-
binatorial and nonlinear problems. One common formulation
of such problem is via Mixed-integer Programming (MIP). In
the context of robot manipulation, one representative work is
the Contact-Trajectory Optimization proposed in [1], where
contact scheduling is modeled as binary decision variables
and the non-convexity due to cross product is relaxed by
McCormick envelopes. However, the approach has only been
demonstrated on 2D object manipulation with very short
manipulation sequences.

In principle, we can employ a brute-force approach to MIP
problems: search over all possible combinations of the discrete
variables and for each such combination solve the resulted
continuous optimization problem. In general, such strategy is
not practical due to the factorial complexity. However, it can
be made more efficient if 1) the search space can be notably
reduced, 2) good search heuristics are available, and 3) the
non-convex continuous optimization problem can be solved
efficiently.

In this work, we show that all these three requirements
can be achieved. In particular, our contributions are 1) we
adapt learning-based Monte Carlo Tree Search (MCTS) to
discrete contact planning problems for robotic manipulation,
2) we formulate the resulted continuous optimization problem
as a biconvex program to allow efficient solution via the
Alternating Direction Method of Multipliers (ADMM) [2],
and 3) we learn a policy-value network from data collected
on short-horizon tasks which provides good heuristics for

long-horizon tasks and significantly decreases the overall so-
lution time. To our best knowledge, this is the first application
of learning-based MCTS to contact planning for manipulation.

II. PROBLEM STATEMENT AND METHOD OVERVIEW

A. Inputs

We aim to solve an object manipulation task similar to
the Contact-Trajectory Optimization problem proposed in [1]
where the following quantities are given: 1) a rigid object with
known geometry and dynamics, and NΩ pre-defined touchable
regions, 2) a trajectory of length T that consists of the desired
object pose, velocity, and acceleration, 3) an environment
with known geometry and friction coefficient µe, and 4) a
manipulator with known kinematics that can make at most Nc

contacts with the object.

B. Outputs

For each time step t, we aim to find the following: 1) the
contact region Ωc(t) ∈ {0, 1, . . . , NΩ}, the contact force fc(t)
and the contact location rc(t) for each contact point c of the
manipulator; Ωc(t) = 0 indicates that the c-th contact point
is not in contact, and 2) the environment contact force fe(t)
such that the forces and torques sum to the desired ones which
can be computed from the object motion.

C. Continuous Contact Optimization via ADMM

If the discrete contact regions were known, the problem
could be reduced to a continuous optimization problem with
an interesting feature: the only non-convex constraint due
to the cross product rc × fc is in fact biconvex. When we
group the decision variables into two sets x = [rc(t)]

T−1
t=0 and

z = [fc(t), fe(t)]
T−1
t=0 , all other standard constraints such as

linearized friction cone and sticking contact are convex and
separable in x and z; hence, the problem can be treated as a
biconvex program and solved via ADMM, which only entails
solving a handful inequality-constrained Quadratic Programs
(QPs).

D. Discrete Contact Planning via MCTS

A family of learning-based MCTS algorithms, which we
will refer to as Policy-Value Monte Carlo Tree Search
(PVMCTS), has been proposed in [3, 4] for the chess-
playing agents AlphaGo and AlphaZero. In our framework,
the PVMCTS searches for contact sequences that are kinemat-
ically feasible, persistent and only allow contact switches at

TABLE I: Task performance for motions interpolated from randomly sampled poses with various lengths. Pose errors are
calculated only for successful tasks.

Object Trajectory Model Success rate Error [cm,°] # Evaluation Time [s]
motions length T Average Worst Average Worst Average Worst

1 48
Untrained 20/20 0.16, 1.18 0.57, 5.89 4.65 11 2.09 4.88
Trained 20/20 0.15,0.39 0.24,0.83 1.5 4 0.71 1.73

2 96
Untrained 20/20 0.35, 1.23 0.79, 2.24 8.15 25 8.54 21.88
Trained 20/20 0.32,0.88 0.48,1.78 2 5 1.96 4.68

3 144
Untrained 12/20 0.48, 1.86 0.91, 5.98 29.85 50 46.23 84.63
Trained 20/20 0.43,1.81 0.58,4.84 2.3 8 3.18 9.43

4 192
Untrained 5/20 0.61,1.95 0.74,2.13 43.05 50 93.57 137.31
Trained 20/20 0.65, 2.56 1.59, 6.92 2.8 16 6.12 31.02

zero velocity and acceleration; when the angular acceleration
is nonzero, we require at least 3 contact points to be in
contact. The candidate sequences are evaluated by solving the
resulted continuous optimization problem via ADMM, where
the solution is then integrated to give a pose error normalized
between [0, 1] as the reward function. The collected rewards,
the search decisions and the goal pose of the task are then
used to learn a goal-conditioned policy-value network to guide
future search. To avoid biasing the learned value function, we
train it only on data with positive rewards. We additionally
train a binary classifier to determine if the contact sequence
should be fed into the policy-value network.

III. EXPERIMENTS

We conduct simulation experiments to show that our method
1) is capable of finding dynamically feasible solutions to ma-
nipulation planning problems defined in Sec II, and 2) scales
to long-horizon tasks even when trained only on data collected
from short-horizon tasks.

A. Experiment Setup

Throughout all experiments, we consider a manipulator with
Nc = 2 contact points, composed of two modular robot fingers
similar to the ones used in [5] and a 10 cm× 10 cm× 10 cm
cube with mass m = 0.5 kg on an infinitely large plane. The
cube and the plane have the same friction coefficient µ =
µe = 0.8. The manipulation tasks are defined by interpolating
planar object motions with randomly sampled desired position
and rotation around the z-axis. The trajectories in the training
data all have a length of T = 96.

B. Metrics

We examine three performance metrics to evaluate the
effectiveness and efficiency of our method 1) Pose error: the
error between the desired pose and the one integrated from the
solution. 2) Number of evaluations: the number of continuous
optimization problems the PVMCTS needs to solve until it
finds the first feasible solution. 3) Solution time: the total
time needed to find the first feasible solution.

C. Results

We evaluate the trained and untrained models on tasks
that are generated by the same procedure yet have different
trajectory lengths. Each task category with the same trajectory
length has 20 different randomly generated tasks. A task is

considered failed if no feasible solution within the error thresh-
old is found after evaluating 50 contact sequences. Table I
reports the performance metrics of the untrained and trained
model for each task category. We see that the trained model
consistently solve all the tasks, regardless of the trajectory
length, while the untrained model struggles in long-horizon
tasks, solving only 5 out of 20 tasks with trajectory length
T = 192. In contrast to the untrained model, the average
number of evaluations required by the trained model to find the
first feasible solution grows rather slowly with the trajectory
length.

IV. CONCLUSION

In this work, we proposed a framework that combines data-
driven tree search via PVMCTS and efficient non-convex
optimization via ADMM to find dynamically feasible contact
forces and locations to realize a given object motion. We show
that the capability of learning from data allows our framework
to achieve great scalability for long-horizon motions even
when the dataset only contains data collected from shorter
motions. We recognize that two most limiting aspects of our
approach are 1) the object motion must be provided; 2) perfect
knowledge about the environment is required, which we leave
for future work.

REFERENCES

[1] Bernardo Aceituno-Cabezas and Alberto Rodriguez. A
global quasi-dynamic model for contact-trajectory opti-
mization. In Robotics: Science and Systems (RSS), 2020.

[2] Stephen Boyd et al. Distributed optimization and statistical
learning via the alternating direction method of multipli-
ers. Foundations and Trends® in Machine learning, 3(1):
1–122, 2011.

[3] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert,
Karen Simonyan, Laurent Sifre, Simon Schmitt, Arthur
Guez, Edward Lockhart, Demis Hassabis, Thore Graepel,
et al. Mastering atari, go, chess and shogi by planning
with a learned model. Nature, 588(7839):604–609, 2020.

[4] David Silver et al. Mastering the game of go without
human knowledge. Nature, 550(7676):354–359, 2017.

[5] Manuel Wüthrich et al. Trifinger: An open-source robot
for learning dexterity. arXiv preprint arXiv:2008.03596,
2020.

	Introduction
	Problem Statement and Method Overview
	Inputs
	Outputs
	Continuous Contact Optimization via ADMM
	Discrete Contact Planning via MCTS

	Experiments
	Experiment Setup
	Metrics
	Results

	Conclusion

