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Fast Contact-Implicit
Model-Predictive Control

Simon Le Cleac’h1∗, Taylor A. Howell1∗, Mac Schwager2, and Zachary Manchester3

Abstract—We present a general approach for controlling
robotic systems that make and break contact with their envi-
ronments. Contact-implicit model-predictive control (CI-MPC)
generalizes linear MPC to contact-rich settings by relying on
linear complementarity problems (LCP) computed using strategic
Taylor approximations about a reference trajectory and retaining
non-smooth impact and friction dynamics, allowing the policy to
not only reason about contact forces and timing, but also generate
entirely new contact mode sequences online. To achieve reliable
and fast numerical convergence, we devise a structure-exploiting,
interior-point solver for the LCP contact dynamics and a custom
trajectory optimizer for trajectory-tracking MPC problems. We
demonstrate CI-MPC at real-time rates in simulation, and
show that it is robust to model mismatch and can respond to
disturbances by discovering and exploiting new contact modes
across a variety of robotic systems, including a pushbot, hopper,
and planar quadruped and biped.

Index Terms—Model-Predictive Control, Legged Robots, Con-
tact Modeling, Optimization and Optimal Control.

I. INTRODUCTION

CONTROLLING systems that make and break contact
with their environments is one of the grand challenges

in robotics. Numerous approaches have been employed for
controlling such systems, ranging from hybrid-zero dynamics
[13, 1, 10], to complementarity controllers [2], to neural-
network policies [4, 5], and model-predictive control (MPC)
[14, 11]. There have also been numerous successes deploying
such approaches on complex systems in recent years: direct
trajectory optimization and LQR on Atlas [8], smooth-contact
models and differential dynamic programming on HRP-2 [12,
7], zero-moment point and feedback linearization on ASIMO
[6], and MPC with simplified dynamics models on Cheetah [3]
and ANYmal [9]. However, reliable general-purpose control
techniques that can reason about contact events and can be
applied across a wide range of robotic systems without requir-
ing application-specific model simplifications, gait-generation
heuristics, or extensive parameter tuning remain elusive.

In this work, we focus on the problem of local tracking con-
trol for systems that experience contact interactions with their
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Fig. 1: Monte Carlo simulations of initial conditions for sys-
tems tracking a reference trajectory. 100 initial configurations
are randomly sampled for a hopper (top) and quadruped
(bottom). Perturbations from the reference initial configuration
include large translations, tilts, and joint-angle offsets. The
policy successfully converges to the reference gait for all initial
conditions on both systems.

environments. Our approach combines a differentiable “hard-
contact” rigid-body dynamics formulation with strategic lin-
earizations, exploitation of the trajectory-optimization problem
structure, and specialized numerical optimization techniques.
The result is a model-predictive-control algorithm that can
effectively reason about contact changes in the presence of
large disturbances while remaining fast enough for real-time
execution on modest computing hardware.

We formulate dynamics with contact as a complementar-
ity problem that simultaneously satisfies impact and friction
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constraints. By employing a interior-point method to optimize
this problem, we naturally and reliably converge from “soft”
to “hard” contact as the central-path parameter is decreased
to zero. At a solution point, the implicit-function theorem is
then utilized to efficiently compute dynamics derivatives for
use in the policy. To enable real-time performance for model-
predictive control, we pre-compute linearizations of the sys-
tem’s dynamics, signed-distance functions, and friction cones
about a reference trajectory, while explicitly retaining comple-
mentarity constraints that encode contact switching behavior,
resulting in a sequence of lower-level time-varying linear-
complementarity problems (LCP). An upper-level trajectory-
optimization problem is then optimized using an efficient
structure-exploiting solver. We refer to this algorithm as
contact-implicit model-predictive control (CI-MPC).

Finally, we demonstrate that our CI-MPC policy can gener-
ate new contact sequences online and reliably track reference
trajectories while subject to significant model mismatch and
large disturbances for a number of qualitatively different
robotic systems, including a pushbot, hopper, and planar
quadruped and biped.

Our specific contributions are:
• A contact-dynamics formulation that can be reliably eval-

uated and efficiently differentiated with a custom interior-
point solver

• Fast, structure-exploiting solvers for the contact-dynamics
and trajectory-optimization problems

• A model-predictive-control framework for robotic sys-
tems with contact dynamics

• A collection of simulation examples demonstrating the
performance of the CI-MPC algorithm on a variety of
robotic systems across a range of highly dynamic bal-
ancing and locomotion tasks

A pre-print of our paper is available on
arXiv: arxiv.org/abs/2107.05616. An
open-source implementation of the algorithm,
ContactImplicitMPC.jl, along with a set of
experiments on various dynamical systems are available at:
github.com/dojo-sim/ContactImplicitMPC.jl.
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