
Dynamic Inference on Graphs using Structured
Transition Models
Saumya Saxena1 and Oliver Kroemer1

Abstract—Common everyday tasks such as picking up an
object in one smooth motion or pushing off a wall to quickly
turn a corner involve complex dynamic interactions between the
human and the environment. These dynamic interactions are
critical in successful execution of these tasks. Thus, in order
to enable robots to perform such dynamic tasks effectively,
we need to consider the dynamics of the robot, the individual
objects, as well as the interactions between them. In this work,
we present a method that enables efficient learning of the
dynamics of interacting systems by simultaneously learning a
dynamic graph structure and a stable and locally linear forward
dynamic model of the system. The dynamic graph structure
encodes evolving contact modes along a trajectory by making
probabilistic predictions over the edge activations. The learned
stable and locally linear dynamics enable the use of optimal
control algorithms such as iLQR for long-horizon planning and
control for complex interactive tasks. Through experiments in
simulation and in the real world, we evaluate the performance of
our method by using the learned interaction dynamics for control
and demonstrate generalization to more objects and interactions
not seen during training.

I. INTRODUCTION

In this work, we develop a method for efficiently learn-
ing the dynamics of interacting systems by simultaneously
learning a relational dynamic graph structure and a stable
locally linear forward dynamic model of the system. We use
the spring-mass-damper model as a structural prior over the
local object-centric dynamics of our system. This provides us
with two benefits: linearity and stability. For positive values
of mass, stiffness and damping parameters, the linear spring-
mass-damper model is always stable about the equilibrium
point (which is also learned) [2].

We explore an exciting application of this work in the field
of apprenticeship learning wherein the learned locally linear
model can be used for learning the quadratic cost function
underlying expert demonstrations using differentiable LQR as
the policy class [1, 4]. The learned behavior can then be
generalized to unseen goal conditions.

The key contributions of this work are two-fold: 1) a method
for learning stable locally linear dynamics for non-linear
interactive systems using graph neural networks by encoding
changing dynamics and contacts as part of the graph structure,
enabling strong generalization properties to more objects in
the scene, and 2) using the learned locally linear dynamics to
devise a robust control scheme that utilizes the recurrent nature
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of the learned graph structure to adapt the model predictions
and the policy to observed contact events.

II. METHOD

Our training pipeline is composed of two main modules that
are trained together, 1) a graph inference module that learns the
dynamic graph structure, and 2) a forward dynamics module
that learns the stable locally linear forward dynamics given
the graph structure. An overview of the method is shown in
Fig. 1.

A. Graph Inference Module

The state of the system at time t is represented as a graph
Gt = (Nt, Et) where nodes Nt represent objects in the scene
and edges Et connect interacting nodes. Node ni

t ∈ Nt is
represented using a feature vector xi

t where xi
t = [qi

t, q̇
i
t].

qi
t and q̇i

t are the position and velocity of the ith object
respectively. The edge eijt ∈ Et connecting nodes i and j is
represented with edge features dij

t where dij
t is the distance

between nodes ni
t and nj

t .
Starting with a set of trajectories of fully connected graphs

(G0,u0, . . . ,GT ,uT ) (where ut is the control applied at time
t, and T is the length of the trajectory), we first pass them
through the inference graph network that performs message
passing between the nodes and outputs embedded graphs.
Next, to aggregate information temporally, we pass the edge
embeddings mij

0,...,T through a GRU that outputs a discrete
probability distribution pij

t over the edge types (active or
inactive) for each edge. We sample from this distribution to
get the edge activations aijt . Differentiability of this sampling
procedure can be ensured by employing techniques such as
Gumbel softmax [3].

B. Forward Dynamics Module

Using the edge activations output from the Graph Inference
Module, we remove the inactive edges from the fully
connected input graphs and then pass them through the
forward dynamics graph network that outputs another set
of embedded graphs. The node embeddings z̃ijt are passed
though a fully connected neural network that outputs spring-
mass-damper parameters [ 1

mi
t
, kit, c

i
t, x̂

i
t] independently for

each node where mi
t is the mass, kit is the stiffness of the

spring, cit is the damping, x̂i
t is the equilibrium point.

The loss function for training the model is written as,

Ldyn =
∑
i

||xi∗

1:T − xipred

1:T ||2 +
∑
i,j

KL[pij
0:T−1 ||q

ij
0:T−1]
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Fig. 1. Method overview. Our method has two main parts 1) Graph inference module: we start with a set of fully connected graphs and pass them through
the inference graph network that performs message passing between the nodes and outputs embedded graphs. Next, to aggregate information temporally, we
pass the edge embeddings mij

0,...,T through a GRU that outputs a discrete probability distribution pij
t over the edge types (active or inactive) for each edge.

We sample from this distribution to get the edge activations aij
t . 2) Forward dynamics module: using the edge activations, we remove the inactive edges from

the fully connected input graphs and then pass them through the forward dynamics graph network that outputs another set of embedded graphs. The node
embeddings z̃ijt are passed though a fully connected neural network that outputs stable locally linear transition dynamics. We forward propagate the learned
dynamics using the input control and get the next state which is used for loss calculation during training

where xi∗
t+1 is the observed next state and xipred

t+1 = Ai
tx

i∗

t +

Bi
tut + oi

t is the predicted next state for node ni. pij
0:T−1 is

the probability distribution over predicted edge activations and
qij
0:T−1 is a prior on the edge activations.

Fig. 2. Box2D and real world experiments

III. EXPERIMENTS

The proposed method is evaluated in simulation using the
Box2D environment as shown in Fig. 2. We consider two tasks
in this environment: Task 1: Dynamically (without stopping)
picking up a 2D object using a 2D gripper and taking it to
a goal region (Fig. 2 Rows 1 & 2), and Task 2: Dynamic
pickup of multiple objects (Fig. 2 Rows 3 & 4). For each of
the tasks, we use the learned dynamic models for control using
iLQR-MPC and calculate the N-step prediction error. Row 1
in Fig. 2 shows the executed trajectory for Box2D Task 1 with
same number of objects as seen during training. Row 2 shows
Box2D Task 1 generalization scenario with many distractor

objects (orange) in the scene, not seen during training. Row 3
shows Box2D Task 2 with same number of objects (two) as
seen during training. Row 4 shows Box2D Task 2 generaliza-
tion scenario for picking up many more objects than during
training. Row 5 shows real world experiments with the 7DOF
Franka-Emika Panda arm performing a dynamic pickup task
using the learned model.

We observe that, when tested with the same number of ob-
ject interactions as seen during training, the N-step prediction
error is 0.16cm for task 1 and 0.14cm for task 2. When tested
for generalization (rows 2 and 4 in Fig. 2) the N-step prediction
error is 0.34cm for task 1 and 0.39cm for task 2 – less than
a centimeter. Hence, we show strong generalization to more
objects and interactions in the scene.

IV. CONCLUSION AND FUTURE WORK

In this work, we showed that by learning the dynamics
of interactive systems by simultaneously learning a dynamic
interaction graph and a stable locally linear forward dynamic
model given the graph, we can use the learned dynamics
for long-horizon control using iLQR-MPC. This work also
demonstrates on the generalization benefits of learning a
dynamic graph structure.
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