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Abstract—Many modern manipulation systems rely on clos-
ing feedback loops around vision data, which reduces system
bandwidth and performance speed. By developing autonomous
grasping reflexes that rely on high-bandwidth force, contact, and
proximity data, the overall system speed and robustness can be
increased while also reducing the reliance on vision data. We are
developing a new system built around a low-inertia, high-speed
arm with nimble fingers that combines a high-level trajectory
planner operating at less than 1Hz with low-level autonomous
reflex controllers operating upwards of 200Hz. In preliminary
experiments, the system is able to clear clutter consisting of 5
household objects from a cupboard in approximately 35 seconds.

I. INTRODUCTION

Achieving human-like versatility in robotic manipulation
will depend on developing hands that are as nimble and
reactive as human hands. Much work has been done on
developing taxonomies and design requirements for hands
[1, 4], but state-of-the-art manipulation systems have not yet
been able to replicate the human hand’s functionality.

Instead, many modern systems use relatively limited hard-
ware and deploy learning algorithms that depend on large
amounts of vision data to carefully plan grasps [3, 5, 8].
These algorithms can plan the entire manipulation process,
from arm motion down to fingertip contacts, but the high
latency introduced by the vision systems results in grasping
controllers that are unable to properly react to high-bandwidth
object interaction information. Even if contact and force data
are used in the planning algorithms, the bandwidth of the
vision system limits the execution speed and usually requires
that the manipulation is quasi-static.

We propose a different approach to building a manipulation
system, starting from autonomous low-level behaviors, which
we call reflexes, instead of relying on a single integrated
algorithm. As reflexes are constructed to reason about contact
interactions, finger motions, and potentially arm motions, the
scope of a higher-level planner is reduced to reasoning only
about the manipulation task. The reflexes are autonomous from
the planner, and are based on high-bandwidth information,
such as force, contact, and proximity data, that is directly
sensed. We use these reflexes to close the grasping feedback
loop locally in the hand, without needing vision data or adding
unnecessary planning complexity. In this abstract, we present
initial results from our proposed system architecture for a
clutter-clearing task.

Fig. 1. Manipulation system setup. Left: Manipulation platform with 6-
DoF arm, 6-DoF gripper, multimodal fingertip sensing, and Intel Realsense
D435i camera. Right: Objects are picked from the upper shelf and placed in
a dishes bin, on the lower shelf, or dropped into a trashcan.

II. MANIPULATION SYSTEM

Our manipulation system is shown in the left of Fig. 1.
It consists of a low-inertia, high-speed arm with six de-
grees of freedom and a planar six degree-of-freedom gripper
with two three-link fingers. Each fingertip has a multimodal
force/contact sensor [2] combined with four time-of-flight
sensors (two facing inwards, one forwards, and one outwards).
There is an additional time-of-flight sensor in the palm. The
reflexes make use of the arm and finger kinematics, the contact
kinematics (when in contact), and the force and proximity data.
All of the sensors are sampled at 200Hz, with minimal time for
processing overhead, and the motors are controlled at 500Hz.

To generate high-level manipulation plans, a Realsense
D435i camera is used to capture a frame of the shelf envi-
ronment. The user (emulating a planning algorithm) selects
a region for grasping, and the average [x,y,z] coordinates of
the selected pixels are sent to the arm controller as the next
desired grasping location. As the arm moves to the desired
grasp location, the reflexes attempt to grasp the object.

III. AUTONOMOUS GRASPING REFLEXES

A flowchart detailing the reflexive grasping controller is
shown in Fig. 2. Once a grasping target has been received, the
arm moves towards the location. During this stage, the fingers
use the proximity data to avoid collisions with external objects
and detect occlusions in the forward direction. The inwards-
facing proximity sensors are used to detect the desired object



and allow the fingers to follow the object surface as the wrist
advances and to trigger the grasp. Once a grasp attempt is
triggered, the fingers close into contact with the object and
the grasp is evaluated. If the grasp is successful, with good
fingertip contact angles and forces and no extraneous fingertip
motion, the arm trajectory is stopped and the object is moved
to the desired location. During this motion, the shear force data
from the fingertips is used to calculate pinch forces that will
prevent the object from slipping out of the gripper. If the grasp
is unsuccessful, the finger kinematics and contact angles are
used to choose whether to attempt a power or antipodal pinch
grasp or to drag the object out from clutter before trying to
grasp again. If executing the grasp takes too long or too many
attempts are required, the grasp fails and the arm returns to a
home position to wait for another target location.

IV. RESULTS AND DISCUSSION

Despite noisy vision data and inconsistent user inputs, the
reflex controllers can locate and grasp the desired object. In
our first results videos here and here, we send the initial object
location and then purposely perturb the object. The fingers
react to the displaced object, even if it is moved in real-time,
and are able to complete the desired grasp.

In our second results video here, we show an example trial
of clearing objects off of a shelf. The objects have different
sizes, shapes, and stiffness, and they are all successfully picked
from the shelf using just the approximate initial location sent
by the user. Our system takes an average of 5-6 seconds per
object with nominal trajectory speeds, while a lab member
performing the same shelf-clearing task at a comfortable speed
took about 2 seconds per object.

The current version of the gripper uses off-the-shelf fin-
ger actuators with limited current control bandwidth, which
reduces their reaction speeds and thus the average time per
grasp. This can be improved with custom actuators and motor
drivers that are designed for high-bandwidth current control.

It is also important to note that our low-level reflexes could
be easily integrated in place of the grasping controllers in
most state-of-the-art learning pipelines, such as those in [5, 6,
7]. We would expect this to increase the execution speed and
robustness of the high-level manipulation plans.

V. CONCLUSION

We have presented promising early results for our proposed
autonomous reflexive grasping system. The reflexes improve
closed-loop manipulation speed and robustness while also
reducing planner complexity. Future work includes expanding
the reflexes, improving the reliability of the gripper hardware,
further testing and characterization of the overall system
behavior, and possible integration with state-of-the-art manip-
ulation planners.
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Fig. 2. Controller for reflexive grasping. As the arm moves the gripper
to the target location, the autonomous reflexes attempt to grasp the object.
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