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Abstract—Many controllers for legged robotic systems leverage
open- or closed-loop control at discrete hybrid events to enhance
stability. These controllers appear in several well studied phenom-
ena such as the Raibert stepping controller, paddle juggling, and
swing leg retraction. This work introduces hybrid event shaping
(HES): a generalized method for analyzing and designing stable
hybrid event controllers. HES utilizes the saltation matrix, which
gives a closed-form equation for the effect that hybrid events
have on stability. We also introduce shape parameters, which are
higher order terms that can be tuned completely independently of
the system dynamics to promote stability. Optimization methods
are used to produce values of these parameters that optimize
a stability measure. Hybrid event shaping captures previously
developed control methods while also producing new optimally
stable trajectories without the need for continuous-domain feed-
back.

I. INTRODUCTION

In general, the walking and running gaits of legged robots
are naturally unstable and challenging to control. Hybrid
systems such as these are difficult to work with due to the
discontinuities in state and dynamics that occur at hybrid
events, such as toe touchdown, which violate assumptions of
standard controllers designed for purely continuous systems.

Several works have examined the utility of controlling hy-
brid event conditions to improve system stability without any
closed-loop continuous-domain control [2,3]. For example, [2]
found that for the paddle juggler system, paddle acceleration
at impact uniquely determines the local stability properties of
a periodic trajectory, Fig. 1. So far, however, these results have
only been produced for the specific problem structure and are
not generalizable to more complex systems.

In this work, we propose the concept of hybrid event
shaping (HES), which describes how hybrid event parameters
can be chosen to affect the stability properties of a periodic
orbit. We also propose methods to produce values of these
hybrid event parameters to optimize a stability measure of a
trajectory.

This abstract is adapted from the conference paper, Hybrid Event Shaping
to Stabilize Periodic Hybrid Orbits presented at ICRA 2022 [1].
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Fig. 1. The paddle juggler system [2] has no control authority while
the ball is in the air. The paddle acceleration at impact determines the
convergence/divergence of the system from initial points (cyan dots) to the
final states (magenta stars) after 5 cycles. This example underscores how
hybrid event shaping can stabilize a periodic hybrid system.

II. PRELIMINARIES

Following the adaptation of [4] in [1], we define a hybrid
system as a tuple H := (J , Γ,D,F ,G,R). The variational
equations of hybrid events are characterized by the saltation
matrix Ξ(I,J)(t̄i, x(t̄i), u(t̄i)), which approximates the first-
order change in perturbations in state before a hybrid event at
δx(t̄i) to perturbations afterward δx(ti+1) [5]. Following the
formulation from [5], the saltation matrix is,

Ξ = DxR+
(FJ −DxR · FI −DtR)Dxg

Dtg +DxgFI
(1)

A dynamical system has a periodic trajectory (orbit) if it
repeats itself after period T . Initial perturbations δx0 can be
mapped to perturbations δxT after period T by a linearized
mapping known as the monodromy matrix, Φ which can be
computed by sequentially composing the linearized variational
equations in each continuous domain (A) and the saltation
matrices (Ξ) at each hybrid event [6]:

Φ = Ξ(N,1)AN . . .Ξ(2,3)A2Ξ(1,2)A1 (2)

The monodromy matrix determines local asymptotic orbital
stability. For nonautonomous systems, stability is determined
by the maximum magnitude of the eigenvalues, max(|λ|)
[7]. We refer to this as the stability measure, ψ, where a
trajectory is stable when ψ < 1. Autonomous systems always
have an eigenvalue that is equal to 1 since for non-time
varying dynamics, perturbations along the flow of the orbit
will by definition map back to themselves after period T [7].
Assuming non-convergence in this direction is allowable, ψ for
autonomous systems is based on the remaining eigenvalues.



Fig. 2. Biped walker system with kneestrike and toestrike hybrid events.

III. METHODS

The saltation matrix allows for an explicit understanding of
how to perform hybrid event shaping (HES), i.e. choosing
hybrid event parameters such as timing, state, input, and
higher order “shape parameters” to improve the stability of
a periodic trajectory. The key insight is that hybrid event
shaping introduces a generalizable method to stabilize open-
loop hybrid systems.

The saltation matrix is a function of higher order shape
parameters h that do not influence the dynamics of the
system. These parameters arise from the derivatives of the
guards and reset maps, but are not present in the guard, reset
map, or vector field definitions themselves. Therefore, shape
parameters have absolutely no effect on the nominal trajectory
and can be chosen completely freely.

One example of a shape parameter is the angular velocity of
a massless leg of a spring-loaded inverted pendulum (SLIP).
Since a massless leg does not induce any torque in the
air or forces at touchdown, only the position of the leg at
touchdown affects the trajectory of the body. However, leg
velocity appears in the saltation matrix and has a significant
effect on orbital stability [3]. Hybrid event shaping is able to
generate optimal retraction rates for stable SLIP hopping and
the similar paddle juggling phenomenon [1].

Shape parameters can also be induced with discrete changes
in control input. These “virtual hybrid events‘” introduce their
own saltation matrices to be shaped.

IV. EXAMPLE AND RESULTS

Consider a fully-actuated compass walker [8] with knees,
Fig. 2. This biped model consists of two legs connected by an
actuated hip joint. Each leg is separated into two sections, the
upper leg (thigh) and lower leg (shank), which are connected
by an actuated knee joint that has a hard stop when the thigh
and shank are aligned. The ankles are also actuated. The
dynamics of this model are described in [1,8].

A direct collocation trajectory optimization method was
used with the cost consisting of the stability measure and a reg-
ularization on the input. Dynamics and periodicity constraints
were included along with a ground penetration constraint.

In this experiment, three trajectories were compared to ex-
amine how HES can generate stable trajectories and the effect
that virtual hybrid events have in further improving stability.
A trajectory without HES was produced as a control, with
just an input regularization term in the cost. This minimum
energy (ME) trajectory is comparable to conventional robot

Fig. 3. Error of perturbed Minimum Energy (ME), Hybrid Event Shaping
without virtual hybrid events (HES w/o VHE) and HES w/ VHE trajectories
over several steps. Bold lines show average error at each step and shaded
regions indicate ±1 standard deviation. The initial increase in error of the
HES trajectories is allowable and is not considered by the stability measure.

locomotion trajectories. Two HES trajectories were generated,
one with virtual hybrid events (HES w/ VHE) and one without
(HES w/o VHE).

The stability properties of the generated trajectories were
tested through simulation. 50 trials of each trajectory were
initialized with random perturbations. Over a sequence of 10
steps, the state error at each step was tracked for each trial.
Fig. 3 shows that after 10 steps, the HES trajectories have
nearly converged back to the nominal trajectory whereas the
ME trajectories diverge quickly. The HES w/ VHE trajectory
converges to a smaller error after 10 steps compared to the
HES w/o VHE trajectory.

V. CONCLUSION

While the idea of hybrid event control is not novel, hybrid
event shaping provides a generalized method to analyze the
stability of hybrid orbits and select hybrid event parameters
to optimize stability. HES unifies results of previous simple
hybrid event controllers while also being compatible with tra-
jectory optimization techniques to produce stable trajectories
for complex systems.
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