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Abstract—In this draft, we present the formulation of bilevel
optimization for performing robust pivoting manipulation. We
derive analytical expressions for stability margin provided by
friction during pivoting manipulation. This margin is then
used in the bilevel trajectory optimization to design an open-
loop controller that maximizes this stability margin to provide
robustness against uncertainty in physical properties of the
object. The proposed method hass been tested on several pivoting
manipulation scenarios.

I. INTRODUCTION

Contacts are central to most manipulation tasks as they
provide additional dexterity to robots to interact with their
environment. Designing robust controllers for frictional in-
teraction with objects with uncertain physical properties is
challenging as the mechanical stability of the object depends
on these physical properties. Inspired by this problem, we
consider the task of pivoting manipulation in this paper. In
particular, we consider the problem of re-orienting parts with
uncertain mass and Center of Mass (CoM) location using
pivoting. We are interested in ensuring mechanical stability
via friction to compensate for uncertainty in the physical
properties of the objects.

We study pivoting manipulation where the object being
manipulated has to maintain slipping contact with two external
surfaces. A robot can use this manipulation to reorient parts
on a planar surface to allow grasping or assist in assembly
by manipulating objects to a desired pose (see Fig. 1). Note
that this manipulation is challenging as it requires controlled
slipping (as opposed to sticking contact [2, 1]), and thus it is
imperative to consider robustness of the control trajectories.
To ensure mechanical stability of the two-point pivoting in
the presence of uncertainty, we derive a sufficient condition
for stability which allows us to compute a margin of stability.
This margin is then used in a bilevel optimization routine to
design an optimal control trajectory while maximizing this
margin.

II. FRICTIONAL STABILITY MARGIN

We briefly provide some physical intuition about frictional
stability (see Fig. 2). First, suppose that uncertainty exists in
mass of a body. In the case when the actual mass is lower than
estimated, the friction force at point A would increase while
the friction force at point B would decrease, compared to the
nominal case. In contrast, suppose if the actual mass of the
body is heavier than that of what we estimate, then the body
can tumble along point B in the clockwise direction. In this
case, we can imagine that the friction force at point A would

Fig. 1: We consider the problem of reorienting parts for assembly using
pivoting manipulation primitive. Such reorientation could possibly be required
when the parts being assembled are too big to grasp in the initial pose (such
as the gears) or the parts to be inserted during assembly are not in the
desired pose (such as the pegs). The figure shows some instances during
the implementation of our controller to reorient a gear and a peg.
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Fig. 2: Conceptual schematic of our proposed frictional stability and robust
trajectory optimization for pivoting. Due to slipping contact, friction forces
at points A,B lie on the edge of friction cone. Given the nominal trajectory
of state and control inputs, friction forces can account for uncertain physical
parameters to satisfy static equilibrium. We define the range of uncertainty
in gravitational forces and moments that can be compensated by contacts as
frictional stability.

decrease while the friction force at point B would increase.
However, as long as the friction forces are non-zero, the object
can stay in contact with the external environment. Similar
arguments could be made for uncertainty in CoM location. The
key point to note that the friction forces can re-distribute at the
two contact locations and thus provide a margin of stability to
compensate for uncertain gravitational forces and moments.
We call this margin as frictional stability. See [3] for more
details.

III. ROBUST BILEVEL CONTACT-IMPLICIT OPTIMIZATION

We briefly present our open-loop controller formulation
where we incorporate frictional stability in optimization to
obtain robustness under uncertaity of mass and CoM location.
An important point to note is that the optimization problem



TABLE I: Obtained worst stability margins over the time horizons from
optimization for the peg. Note that the stability margin for the solution of
the benchmark optimization is analytically calculated.

ϵ∗+, ϵ∗− [N] r∗+, r∗− [mm]
Benchmark optimization 0.035, 0.018 31, 0

Ours (1) with mass uncertainty 0.050, 0.021 N/A
Ours (1) with CoM uncertainty N/A 38, 0

would be ill-posed if we naively consider uncertainty of mass
and CoM location in static equilibrium since there is no u
to satisfy all uncertainty realization in equality constraints.
Thus, our strategy is that we plan to find an optimal nominal
trajectory that can ensure external contacts under mass or CoM
location uncertainty. In other words, we aim at maximizing
the worst-case stability margin over the trajectory given the
maximal frictional stability at each time-step k. We formulate
a bilevel optimization problem which consists of two lower-
level optimization problems as follows:

max
x,u,f,ϵ∗+,ϵ∗−

(min
k

ϵ∗k,+ −max
k

−ϵ∗k,−) (1a)

s. t. kinematics, hybrid dynamics, variable bounds, (1b)
ϵ∗k,+ ∈ argmax

ϵk,+

{ϵk,+ : Akϵk,+ ≤ bk, ϵk,+ ≥ 0}, (1c)

ϵ∗k,− ∈ argmax
ϵk,−

{ϵk,− : −Akϵk,− ≤ bk, ϵk,− ≥ 0} (1d)

where ϵ∗k,+, ϵ
∗
k,− are the largest uncertainty of mass in the

positive and negative direction, respectively, at k given x, u, f ,
which results in non-zero contact forces. x, u, f are states (i.e.,
box orientation and position of point P in Fig. 2), control
input (i.e., forces at point P ), and external contact forces
from point A and B, respectively. Ak, bk represent inequality
constraints associated with frictional stability margin. (1a)
is the upper-level objective function, which maximizes the
smallest stability margin over time-horizons by subtracting the
stability margin along the positive direction from that along
the negative direction.

The advantage of (1) is that since the lower-level opti-
mization problem are formulated as two linear programming
problems, we can efficiently solve the entire bilevel opti-
mization problem using the KKT condition. Using the KKT
condition and epigraph tricks, (1) becomes a single-level large-
scale nonlinear programming problem with complementarity
constraints. See [3] for more details.

IV. EXPERIMENTAL RESULTS

We first show some numerical results discussing how much
robustness our proposed controller provide over the baseline
controller as shown in Table I and Fig. 3. Fig. 3 shows the
frictional stability for the peg obtained during the trajectories
from the proposed method and the baseline method.

Table I summarizes the computed stability margin from
Fig. 3. Our bilevel optimizer finds trajectories that have larger
stability margins for both uncertain mass and CoM location.
The trajectory of stability margin obtained from bilevel opti-
mization considering mass uncertainty is illustrated in Fig. 3.

Fig. 3: (a), (b): Trajectory of frictional stability margin of the peg based
on uncertain mass obtained from our proposed bilevel optimization, baseline
optimization, respectively. (c): Snapshots of pivoting motion for the peg,
obtained from our proposed bilevel optimization considering uncertain mass.
(d): Snapshots of hardware experiments for the peg.

TABLE II: Number of successful pivoting attempts of gear 1 over 10 trials for
the two different methods. To evaluate robustness for objects with unknown
mass, we solve the optimization with mass different from the known object
and implement the obtained trajectory on the object with known mass. Note
that the actual mass of the gear is 140 g.

Bilevel Optimization Benchmark Optimization
m = 100 g 10 / 10 0 / 10
m = 110 g 10 / 10 0 / 10
m = 140 g 10 / 10 0 / 10
m = 170 g 10 / 10 0 / 10

We also implement our controller using a real 6 DoF manip-
ulator to demonstrate the efficacy of our proposed method for
various gears and pegs. To evaluate robustness for objects with
unknown mass, we solve the optimization with mass different
from the true mass of the object and implement the obtained
trajectory on the object.

Table II shows the success rate of pivoting for the hardware
experiments. We observe that our proposed bilevel optimiza-
tion is able to achieve 100 % success rates for all 4 mass values
while benchmark optimization cannot realize stable pivoting.
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