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Abstract—Robot motion planning and control problems tend to
include discrete decision-making such as contact scheduling and
continuous nonlinear (non-convex) programs such as kinematics
and dynamics constraints. Simultaneously planning discrete and
continuous non-convex variables are known as mixed-integer
nonlinear programs (MINLPs). MINLPs of practical sizes are
typically challenging. In this work, we compare the performance
of several methods including the Alternating Direction Method
of Multipliers (ADMM), data-driven mathematical programs
with complementary constraints, and data-driven mixed-integer
programs with envelopes, to solve a 2D bookshelf organization
problem formulated as a mixed-integer bilinear program. The
final goal is to develop a data-driven pipeline for solving MINLPs.

I. INTRODUCTION

The problems we are interested in solving are mixed-integer
bilinear programs parametrized by Θ that is drawn from a
distribution D(Θ). For each Θ, we seek a solution to the
optimization problem:

minimize
x, z

fobj(x, z; Θ)

s. t. fi(x, z; Θ) ≤ 0, i = 1, ...,mf

bj(x, z; Θ) ≤ 0, j = 1, ...,mb

(1)

Where x denotes continuous variables and z binary variables
with zi ∈ {0, 1} for i = 1, ..., dim(z). Constraints fi are
mixed-integer convex, meaning if the binary variables z are
relaxed into continuous variables z ∈ [0, 1], fi becomes
convex. Constraints bj are mixed-integer bilinear, meaning that
relaxing the binary variables gives bilinear constraints.

There are two directions to convert this problem to either
mixed-integer convex programs (MICPs) or mathematical pro-
grams with complementary constraints (MPCCs). The MICP
approach converts the bilinear constraint b into mixed-integer
linear constraints using McCormick envelopes. The MPCC
approach converts integer variables into continuous variables
with additional complementary constraints. While MICPs can
guarantee a global optimal solution, McCormick envelope
constraints make them very slow. On the other hand, MPCCs
only seek local optimal solutions, but almost impossible to
solve without a good initial guess. For both approaches, pre-
solved data becomes very helpful. Data can uncover important
regions to reduce the size of MICPs. In the best case, it can
be reduced to a convex optimization problem. A learner can
be trained offline to map the problem parameter Θ to a good
candidate solution. The solution will be modified online for
solving new problem instances. Data can also provide good
initial guesses that dramatically increase the chance of success
to solve MPCCs.

However, it is difficult to collect enough data for warm-
start MICP or MPCC solvers, especially when the problem
becomes larger. We also demonstrate using ADMM to solve
the mixed-integer bilinear programs. This approach does not
depend on data, and have decent chance of convergence thus
can be used to collect the initial dataset.

II. BOOKSHELF PROBLEM

Fig. 1 shows the complete formulation of 2D bookshelf
organization problem. The main goal of this problem is to
use robot manipulator to insert one book into the shelf such
that minimal movement of existing books is required. The
complete formulation of this problem is given in 1. This prob-
lem contains integer variables representing different contact
states of the books, and continuous variables related to rotation
matrices and collision avoidance. In particular, this formulation
formulates collision avoidance using separating planes into
bilinear inequality constraints. This approach is applicable
to multi-agent planning problems. This problem may have
a solving time limitation and optimal cost requirement, as
a less optimal motion may take significantly longer for the
manipulator to finish. We demonstrate the aforementioned
approaches on this problem and compare their performances.

III. APPROACHES

A. ADMM Formulation

We implemented the non-data-driven algorithm ADMM in
[1]. The basic idea is to separate the MINLP into a MIP formu-
lation and an NLP formulation with the exact copies of vari-
ables but different constraints, and iterate between them until
the consensus is reached. The MIP formulation contains con-
straints A,B,D,G,H1, I1, J1,K2,K3, L2, L3, while miss-
ing bilinear constraints C,E, F,K1, L1. The NLP formula-
tion contains constraints A,B,C,D,E, F,H, I, J,K,L, while
missing the mode constraint G which says zis are integers.
The ADMM iterates the following 3 steps: first it solves the
MIP formulation, then solves the NLP formulation. Finally it
updates the dual variables. The process continues till conver-
gence. The readers are referred to [1] for details. The results
are shown in II column 1, 2.

B. MPCC Formulation

An equivalent formulation of the bookshelf organization
problem in Fig. 1 is to turn all the integer variables zi into
continuous variables with complementary constraints, such
that the complete formulation can be solved through NLP



Fig. 1. Complete formulation of the bookshelf organization problem.
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of OSQP=600
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learner

Success Rate 96.5% 94.75% 1.25 % 0 % 78.25% 78.25% 99.25% 98.5% 92.5% 94.5% 98.75% 96%

Avg. Solve Time 260 ms 522 ms 72 ms 29 ms 81 ms 30 ms 96 ms 61 ms 65 ms 80 ms 16 ms

Max. Solve Time 1.29 sec 3.59 sec 82 ms 198 ms 1.96 sec 280 ms 990 ms 327 ms 190 ms 400 ms 174 ms

Avg. Objective -7250 -7339 -5703 -8620 -8952 -8258 -8618 -6461 -8631 -8687 -8637

Avg. # of iterations 4.73 4.6 1 1 1.05 1.06 1.25 4.85 3.85 2.57

Solver Gurobi+Knitro Gurobi+IPOPT Knitro IPOPT Knitro IPOPT Knitro IPOPT Knitro OSQP OSQP OSQP

solvers. We implemented the formulation from [4]. Specifi-
cally zi(1− zi) = 0, which is equivalent to zi ∈ {0, 1}.

To get MPCC working, proper initial guesses are required.
Using the solver’s default initial guess will result in a success
rate lower than 5%. We take 2 different approaches to supply
better initial guesses. The first approach is choosing from
heuristics. For this problem, we choose the initial guess to be
the original scene as the problem minimizes the movement of
books. The second approach is collecting a dataset offline and
using k-nearest neighbor to pick the top 3 candidate solutions
online for initial guess, which is data-driven. The results are
shown in Table II column 4− 10.

C. Convex Formulation

We implemented the approach given by [3], named Re-
DUCE, which converts bilinear constraints into mixed-integer
envelope constraints and uses a data-driven approach to reduce
the size of integer problems. In the best case, it can directly
learn a mapping to a convex problem in the same fashion as
[2]. The results are shown in II column 11− 13.

IV. CONCLUSION

The results show that the non-data-driven ADMM approach
has good chance of convergence and decent solving speed. The
rate of success is significantly higher than a poorly initialized
MPCC and significantly faster than a MICP formulation with-
out warm-start. The MPCC formulation has good performance
with data of thousands, mainly due to the strong capability of
NLP solvers to find feasible solutions. In most cases, NLP

solver takes only 1 trial to find a feasible solution. However,
the solving speed seems to be limited. Finally, if the algorithm
can learn a mapping to a convex problem well, the convex
approach has potential to solve most of the test problems with
1 or 2 trials. One can leverage on the strong performance
of convex solvers to achieve fastest speed. However, this
approach requires larger amount of data for more precise
learning.

The proposed algorithms are being tested on more challeng-
ing robotics problems such as modular self-configurable robot
systems and hybrid MPC. Some results are under review.
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